
Stripping the stack

Maarten Pennings

august 1990

Abstract

This paper is about Turbo-pascal. It demonstrates how to do a global exit, i.e. an Exit
of several stacked procedures. Some Pascal implementations support Goto <label>
where label is outside the current block, thereby eliminating the need for a global exit.
Of course you never use gotos, neither do I. But that’s because the only time a Goto
comes in handy — intra block jumps — Turbo doesn’t support them.

1 When to use it

In this section we will introduce a program that would benefit from a global exit mechanism.
We will then use this example to illustrate how a global exit is normally realised. The third
section discusses some elementary stack related topics needed to understand the global exit
mechanism introduced in section 4. In the next section we will incorporate the global exit in
our example.

The sample program that serves our needs is a small recursive descent parser. These
programs heavily rely on mutual recursion thereby forming an excellent object for testing our
global exit mechanism. Our sample parser accepts a small class of expressions, defined by the
following context free grammar:

Expr −→ Factor { ’*’ Factor }
Factor −→ Term { ’+’ Term }
Term −→ ’x’ | ’y’
Term −→ ’(’ Expr ’)’

The above grammer is LL(1) so we can immediately derive the recursive descent parser
associated with it: see figure 1.

This parser works fine. If the entered string belongs to the language The Ok message is
printed. If not, an error message indicating the error is displayed and the program aborts.

1

Program Parse1;

Procedure Expr(Var Inp:String); Forward;

Procedure Skip(Ch:Char; Var Inp:String);

Begin {Skip}
If Inp[1]=Ch

Then Inp:=Copy(Inp,2,Length(Inp)-1)

Else Begin Writeln(’"’,Ch,’" expected’); Halt(1) End

End; {Skip}
Procedure Term(Var Inp:String);

Begin {Term}
Case Inp[1] Of

’(’ : Begin Skip(’(’,Inp); Expr(Inp); Skip(’)’,Inp) End;

’x’ : Skip(’x’,Inp);

’y’ : Skip(’y’,Inp)

Else Begin Writeln(’"(", "x" or "y" expected’); Halt(1) End

End

End; {Term}
Procedure Factor(Var Inp:String);

Begin {Factor}
Term(Inp); While Inp[1]=’+’ Do Begin Skip(’+’,Inp); Term(Inp) End

End; {Factor}
Procedure Expr(Var Inp:String);

Begin {Expr}
Factor(Inp); While Inp[1]=’*’ Do Begin Skip(’*’,Inp); Factor(Inp) End

End; {Expr}
Procedure Parse(Var Inp:String);

Begin {Parse}
Inp:=Inp+’@’; Expr(Inp);

If Inp<>’@’ Then Begin Writeln(’Illegal char’); Halt(1) End

End; {Parse}
Var Inp:String;

Begin {Parse1}
Write(’Type expression: ’); Readln(Inp); Parse(Inp); Writeln(’Ok’)

End. {Parse1}

Figure 1: Abort on error

2 Chaining the exits

The program presented in the previous paragraph meets its informal specification. But in
real-life situations, the aborting-part of the story is inacceptable. The procedure Parse should
always return so that the program can take additional steps to handle the error. For example,
one might like to print the rest of inp so that the user gets to know the location of the error.
And then — in a real life program — the build-in editor is invoked to edit the original input.

If you have a compiler that allows intra-block jumps, you could replace the Halt(1)
procedures with a Goto 9999, where 9999 labels the statement following the Parse(Inp)
statement. Of course you would need a global variable (or var parameter) to indicate an error
has occured, so that you can take appropriate action when Parse returns.

But then, who has a compiler that allows intra-block jumps? Don’t bother to reply, I’am
too addicted to Borlands products to even consider your suggestion. So we have to solve this
problem with Borlands resources. You explicitly encode Exits when an error is reported: see
figure 2.

2

Program Parse2;

Var Error:Boolean;

Procedure Expr(Var Inp:String); Forward;

Procedure Skip(Ch:Char; Var Inp:String);

Begin {Skip}
If Inp[1]=Ch

Then Inp:=Copy(Inp,2,Length(Inp)-1)

Else Begin Writeln(’"’,Ch,’" expected’); Error:=True End

End; {Skip}
Procedure Term(Var Inp:String);

Begin {Term}
Case Inp[1] Of

’(’ : Begin Skip(’(’,Inp); Expr(Inp); If Error Then Exit; Skip(’)’,Inp) End;

’x’ : Skip(’x’,Inp);

’y’ : Skip(’y’,Inp)

Else Begin Writeln(’"(", "x" or "y" expected’); Error:=True End

End

End; {Term}
Procedure Factor(Var Inp:String);

Begin {Factor}
Term(Inp); If Error Then Exit;

While Inp[1]=’+’ Do Begin Skip(’+’,Inp); Term(Inp); If Error Then Exit End

End; {Factor}
Procedure Expr(Var Inp:String);

Begin {Expr}
Factor(Inp); If Error Then Exit;

While Inp[1]=’*’ Do Begin Skip(’*’,Inp); Factor(Inp); If Error Then Exit End

End; {Expr}
Procedure Parse(Var Inp:String);

Begin {Parse}
Error:=False; Inp:=Inp+’@’; Expr(Inp); If Error Then Exit;

If Inp<>’@’ Then Begin Writeln(’Illegal char’); Error:=True End;

End; {Parse}
Var Inp:String;

Begin {Parse2}
Write(’Type expression: ’); Readln(Inp); Parse(Inp);

If Error Then Writeln(Inp) Else Writeln(’Ok’)

End. {Parse2}

Figure 2: Chain exits on error

Normally, you would insert the If Error Then Exit part after each parsing-statement,
i.e. after Expr, Factor, Term and Skip. But since some of these parsing statements are
known not to generate an error (skipping a ’*’ when you just tested for one), I left some of
these checks out.

Nevertheless, the programm is not very ellegant. Chaining the exits increases the program
size, the execution time and it decreases the programs readability. Even a Goto 9999 solution
is be better in this case.

3 About stacks

I can image, Borland is not too eager to implement an intra-block jump. Each time a proce-
dure is invoked, parameters, return address and the local variables as well as some overhead

3

information is pushed on the stack. So if your stack consists of eight nested calls and you
want to drop seven of then, you are in trouble since you have no way to know what invokation
uses what part of the stack. So, how many bytes have to be dropped?

If a procedure is about to be called, what gets pushed on the stack? Well, first the
procedures parameters get pushed on the stack in the order the appear in. Var parameters
always occupy 4 bytes of stack space since they are called by reference (a pointer uses 2 bytes
for the segment and 2 for the offset). For value parameters, the story is somewhat more
complicated.

In general, if a value parameter occupies 1, 2 or 4 bytes, it is pushed directly on the stack
thereby occupying 2, 2 or 4 bytes1. Otherwise, a 4 byte pointer to the value is pushed, and
the procedure itself copies the parameter into a local buffer.

Hence, an parameter of type array[1..2] Of Char is pushed directly on the stack (occu-
pying 2 bytes), while one of type array[0..511] Of Byte is passed by reference (occupying 4
bytes) since the structure is larger than 4 bytes. For standard types as the 10 byte Extended
type, Borland makes an exception. All standard types are always pushed directly on the
stack. For a complete overview, refer to figure 3.

Boolean 2
Char 2
Enumerated 2
ShortInt 2
Byte 2
Integer 2
Word 2
LongInt 4
Subrange hostsize
Pointer 4
String pointer
Set pointer
Single 4
Real 6
Double 8
Comp 8
Extended 10
Arrays 1, 2 or 4 or pointer
Records 1, 2 or 4 or pointer

Figure 3: Sizes of value parameters

After all parameters have been pushed, the return address is pushed. But again, there
is one exception: nested procedures. When a procedure is nested, i.e. it is declared local to

1Since 80?86 CPU’s only support word-size pushes, byte-size parameters are pushed as words. The low
order byte contains the value, the high order byte is undefined and unused.

4

another procedure, the callers BP gets pushed after all parameters have been pushed and just
before the call is made. This makes the variables declared local to the parent addressable to
the child (nested) procedure.

After this optionally pushed word, the return address is pushed. For a near-procedure
this takes only 2 bytes. For far procedures the segment must also be pushed making a total
of 4 bytes.

Hence, upon entry, the stack contains, from the top downwards, the return address (op-
tionally including a segment), an optional reference to the parent procedure (for nested pro-
cedures) and the procedures parameters. The initialisation part of the procedure (what gets
done when you press F7–trace on Begin) then takes over the action. The general entry code
has the following form:

PUSH BP ;Save the current stack frame
MOV BP,SP ;Set up local stack frame
SUB SP,LocalSize ;Allocate memory for local vars and buffers

The parameters and local variables and buffers are made addressable via BP with a MOV
BP,SP instruction. But, before that, BP needs to be saved — via a PUSH BP — so that upon
exit, the previous stack frame can be restored (the previous block can be made addressable).
Two bytes extra on the stack.

Next, memory is allocated for the local variables. Local variables are those declared in a
Var block local to the procedure. A $A+ directive word-alligns these variables thus leaving 1
byte gaps on the stack now and then. In addition to those variables explicitly declared, Turbo
also reserves local buffers for doing some string and set calculations (?). The total amount of
memory occupied by the local variables and buffers is called LocalSize, a constant determined
by the compiler. The standard exit code displayed below, deallocates the entire stackframe:

MOV SP,BP ;Deallocate memory of local vars and buffers
POP BP ;Restore previous stack frame
RET ParamSize ;return and remove parameters

The total amout of memory occupied by the parameters ParamSize — including the
optional reference to the parrent procedure — is also determined by the compiler.

The contents of the stack, once a procedure is invoked, is illustrated in figure 4. Note that
the stack is one word wide and that it grows downwards. Note also that the stack frames are
linked.

4 Global exit

Let us start this section with an example. Suppose we feed the parser with the input
x+y*(x++y)*x. The parser encounters a "(", "x" or "y" expected error when the stack
looks like this (press Ctrl-F3–call stack):

5

...
return-address

† frame link
vars & bufs

...
vars & bufs

firstpar ↑
... ParamSize

lastpar ↓
local var ptr only for nested procedures

seg return-address only in far-call mode
ofs return-address

BP −→ frame link to †
firstvar

... ↑
lastvar LocalSize

local buffers ↓
...

SP −→ local buffers

Figure 4: The stack

Term(’+y)*x@’)
Factor(’+y)*x@’)

Expr(’+y)*x@’)
Term(’+y)*x@’)

Factor(’+y)*x@’)
Expr(’+y)*x@’)
Parse(’+y)*x@’)

Parse2()

If you reverse this table you get figure 5. The global exit should drop all the frames from
(and including) Parse onwards. Therefore we must mark the stack. For this purpose we
introduce a global, i.e. residing in the data segment, variable:

Var SavedSp: Word;

that records the stackspace just before the first call.

The global exit removes everything from SavedSp onwards. This is easily established by
an MOV SP,[SavedSp] instruction. Of course we want to return to the right place also making
the local variables of the caller addressable again. Therefore we do not strip the entire stack.
We let SavedSp point to the stack frame link of the Parse, see figure 5 for more details.

6

A POP BP makes the local variables op Parse2 addressable, a RET returns to the right
spot. However a normal RET would leave the parameters of Parse on the stack, which is not
what Turbo expects. We need a RET ParamSize.

...
Caller Parse2

frame link

↑ First proc Parse
ParamSize

↓
return addres

SavedSp → frame link

...
Global exit issueing
procedure Term

BP −→ frame link

SP −→

Figure 5: The stack just before a global exit

There are three pitfals here. First of all you have to know wether you far-call or near-
call the first procedure, since this determines wheter you need a RET ParamSize or a RETF
ParamSize.

The second problem is that you have to specify ParamSize for your RET (or RETF) instruc-
tion. You must count your parameters, and count them carefully. Running the standalone
debugger comes in handy. Anyhow, now you know why I included the previous section and
spend so much time on parameter sizes. (Don’t forget to add the two bytes for a nested
procedure.)

The third problem is that you have to load SavedSp correctly. The correct value is
Sptr-ParamSize-2-2 if the first procedure is near-call and Sptr-ParamSize-4-2 if it is far-
call. So, solving this problem boils down to solving the other two.

7

5 The final version

In our example, it is the main program that has the call that the global exit should return
to. The first procedure that is called is Parse(Var Inp:String). Var parameters take only
four bytes of stack space. So we set Const ParamSize=4. We compile the Parse procedure
with the near call model, so the global variable Var SavedSp:Word is set to

Var Inp:String;
Begin {Parse3}

Write(’Type expression: ’); Readln(Inp);
SavedSp:=SPtr-(ParamSize+2+2); Parse(Inp);
If Error Then Writeln(Inp) Else Writeln(’Ok’)

End. {Parse3}

All we need now is the global exit procedure. We made it an inline procedure, but if you
prefer, you can make it a normal one. Keep in mind however to select the correct call model
for returning: near in our example.

Procedure GlobalExit; Inline
($8B/$26/SavedSp {MOV SP,[SavedSp]}
/$5D {POP BP}
/$C2/>ParamSize {RET ParamSize}
);

Note the > symbol in the last instruction. It forces the generation of a word instead of a
byte. If you make Parse a far call procedure, you must not only decrease SavedSp by two,
you must also change $C2 (RET) to $CA (RETF). For the final program see figure 6.

6 Once again, peace in my mind

This hacking-cyclus has consumed a considerable amout of time. I tried to get all information
right, but I cannot be held responsible for that. If you get a crashing computer, first blame it on
yourself. If extensive study does not solve the problem, blame it on me and let me know, I
like feed-back.

Maarten Pennings
Remuslaan 3
5631 JN Eindhoven
040-461367.

8

{$F-} {Make sure to select the near call model}
Program Parse3;

Var SavedSp:Word; Const ParamSize=4;

Procedure GlobalExit; Inline($8B/$26/SavedSp/$5D/$C2/>ParamSize);

Var Error:Boolean;

Procedure Expr(Var Inp:String); Forward; {near}
Procedure Skip(Ch:Char; Var Inp:String);

Begin {Skip}
If Inp[1]=Ch

Then Inp:=Copy(Inp,2,Length(Inp)-1)

Else Begin Writeln(’"’,Ch,’" expected’); Error:=True; GlobalExit End

End; {Skip}
Procedure Term(Var Inp:String);

Begin {Term}
Case Inp[1] Of

’(’ : Begin Skip(’(’,Inp); Expr(Inp); Skip(’)’,Inp) End;

’x’ : Skip(’x’,Inp);

’y’ : Skip(’y’,Inp)

Else Begin Writeln(’"(", "x" or "y" expected’); Error:=True; GlobalExit End

End

End; {Term}
Procedure Factor(Var Inp:String);

Begin {Factor}
Term(Inp); While Inp[1]=’+’ Do Begin Skip(’+’,Inp); Term(Inp) End

End; {Factor}
Procedure Expr(Var Inp:String); {near}

Begin {Expr}
Factor(Inp); While Inp[1]=’*’ Do Begin Skip(’*’,Inp); Factor(Inp) End

End; {Expr}
Procedure Parse(Var Inp:String);

Begin {Parse}
Error:=False; Inp:=Inp+’@’; Expr(Inp);

If Inp<>’@’ Then Begin Writeln(’Illegal char’); Error:=True; GlobalExit End

End; {Parse}
Var Inp:String;

Begin {Parse3}
Write(’Type expression: ’); Readln(Inp);

SavedSp:=SPtr-(ParamSize+2+2); {near} Parse(Inp);

If Error Then Writeln(Inp) Else Writeln(’Ok’)

End. {Parse3}

Figure 6: Global exit mechanism

9

